Showing posts with label Useful Mathematics. Show all posts
Showing posts with label Useful Mathematics. Show all posts

Tuesday, June 8, 2010

Useful Mathematics

Useful Mathematics Solutions

Algebra

The Binomial Theorem

(1 + x)n = 1 + nx + [n(n-1) x2]/(2!) + [n(n-1)(n-2) x3]/(3!) + ...
If x <<>
(1 + x)n ≅ 1 + n x
(1 + x)-n ≅ 1 - n x
These approximations are useful when x2 is negliable.

Quadratic Equations

ax2 + bx + c = 0 has the solution,
x ={[-b ± (b2 - 4ac)]1/2} / (2a)

Trigonometry

π rad = 180 °
1 rad = 57.3 °
The quadrants in which trigonometrical functions are positive. Is shown below:
Signs of trigonometric functions

A good way to remember this is the phrase clockwise ACTS. Clockwise gives the direction from the first quadrant is clockwise and each letter from the word ACTS stands for a trigonometric function: All, Cos, Tan and Sin. The direction of the angle increases in an anti-clockwise sense.


If A and B are angles then
tan A = sin A/cos A
sin2 A + cos2 A = 1
sec2A = 1 + tan2 A
cosec2 A = 1 + cot2 A
sin (A ± B) = sin A cos B ± cos A sin B
cos(A ± B) = cos A cos B -/+; sin A sin B
tan (A ± B) = (tan A ± tan B)/(1 ∓ tan A tan B)
If t= tan (1/2) A, sin A = (2t) / (1 + t2), cos A = (1 - t2) / (1 + t2)
2 sin A cos B = sin (A + B) + sin (A - B)
2 cos A cos B = cos (A + B) + cos (A - B)
2 sin A sin B = cos (A - B) - cos (A + B)
sin A + sin B = 2 sin [(A + B)/2] cos [(A - B)/2]
sin A - sin B = 2 cos [(A + B)/2] sin [(A - B)/2]
cos A + cos B = 2 cos [(A + B)/2] cos [(A - B)/2]
cos A - cos B = 2 sin [(A + B)/2] sin [(A - B)/2]

Power Series

ex = exp x = 1 + x + x2/(2!) + ... + xr/(r!) + ... for all x
ln (1 + x) = x - x2/ 2 + x3/3 - ... + (-1)r+1xr/r + ... (-1 <>
cos x = (eix + e-ix)/2 = 1 - x2/(2!) + x4/(4!) - ... + (-1)rx2r/(2r)! + ... for all x
sin x = (eix - e-ix)/(2i) = x - x3/(3!) + x5/(5!) - ... + (-1)rx2r+1/(2r + 1)! + ... for all x
cosh x = (ex + e-x)/2 = 1 + x2/(2!) + x4/(4!) + ... + x2r/(2r)! + ... for all x
sinh x = (ex - e-x)/2 = x + x3/(3!) + x5/(5!) + ... + x2r+1/(2r + 1)! + ... for all x
Hope you like the above formulas and examples of Mathematics.Please leave comments.